
技能科学研究，37 巻，2号 2020

- 43 -

耐故障化 BP学習の実装に伴うディープラーニングフレームワークの

機能拡張に関する研究

Deep Learning Framework Extensions with Implementation of

Fault Tolerant BP Learning

アストリウィンドウサリ，堀田 忠義，秋葉 将和

Astriwindusari, Tadayoshi Horita and Masakazu Akiba

1. Introduction

1.1. Background

An artificial neural network (hereinafter referred as “neural

network”) is an electrical circuit that imitates human brain

nervous systems. It consists of artificial nodes called neurons.

In a multilayer neural network, the previous layer node is

interconnected with next layer by direct links called

connection weights.

Neural networks have been studied since 1943 by

McCulloch et al. McCulloch and Pitts were the first to

implement a human brain in a hardware model. In 1985,

Rosenblatt proposed a simple perceptron that have the ability

to learn. In 1986, Rumelhart et al. are the first who proposed

the Back Propagation (hereinafter referred as “BP”)

algorithm[1].

Since then, the neural network field has developed and is

extending become a new field called Artificial Intelligence

(AI). Deep learning is one of AI technology and was

developed based on multilayer neural networks.

On the other hand, the world of computer hardware is also

evolving. A Graphics Processing Units (GPU) is a processor

that specialized in image processing. GPUs are composed of

thousands of cores for parallel processing so it can display

images in screen. Nowadays, GPUs can be used for

general-purpose programming as well as graphics. This is

called GPGPU (General Purpose Computing on GPUs), and

with the use of GPU high-speed processing by parallel

computation could be obtained. In order to make GPGPU

programming easier, NVIDIA inc. has developed a platform

called CUDA (Compute Unified Device Architecture).

In this research, a neural network will become fault-tolerant

when each part of a neural network such as neuron,

connection weight and others is realized to hardware by an

analog or a digital circuit. The set of connection weight values

uses the set of values obtained by the fault-tolerant learning as

described later. Therefore, the fault tolerance for failure during

learning phase is out of range. In Addition, a neural network

for solving complex problems is complex in hardware too so

high fault tolerance is highly expected.

Various studies on fault tolerance in multilayer neural

networks have been conducted. References [2] to [11] are the

examples. As a previous study of this research, authors

proposed a fault-tolerant algorithm called “Deep LM” which

make 3-layered-perceptrons multiple-weights-and-neurons

fault tolerant[12]. The algorithm name hereinafter will be called

“FTL-algo” so it will not be confused with the deep learning.

FTL-algo is based on the BP algorithm with some

modifications. With FTL-algo, it has been proved that a

3-layered-perceptrons with 100% fault-tolerant can be

realized for multiple weight-and-neuron faults. If the value of

the degree of fault tolerance becomes bigger, FTL-algo

learning time also becomes enormous bigger than normal BP

algorithm. Therefore, authors developed FTL-algo with

CUDA C programming and proposed acceleration method

using GPGPU[13].

In 2017, Amatya et al. studied fault tolerance for extended

deep learning framework(hereinafter referred as “DLFW”)

called MaTEx-Caffe that used in a parallel computing

environment called Message Passing Interface (MPI)[14]. In

2019, Duddu et al. studied fault tolerant learning for deep

neural network by Tikhonov regularization using Pytorch[15].

In addition, Xu et al. studied fault tolerance for deep learning

with applied N-version programming using Pytorch[16]. These

three studies imply that researches on fault tolerance on

DLFWs have begun in recent years.

Researches on implementations of fault-tolerant learning

algorithms including FTL-algo using GPGPU-based

accelerations(including DLFWs) to find more efficient

methods for implementing fault-tolerant in multilayer neural

networks is highly desired in discovery. The previous

researches [13] and [17] described acceleration of FTL-algo

using GPGPU. However, this kind of research has not been

found in previous studies except [13] and [17].

技能・技術報告

JOURNAL OF POLYTECHNIC SCIENCE VOL. 37, NO. 2 2020

- 44 -

1.2. Purpose

The purpose of this research are listed below.

 The first purpose is to select the optimal environment

among two DLFWs on two OSs to implement FTL-algo.

The two DLFWs are Keras Tensorflow(hereinafter

referred as “Keras”) and Pytorch, and the two OSs are

Linux and Windows. The programming development for

FTL-algo is performed in each environment, and the best

one is selected from the viewpoint of calculation time and

difficulty of programming.

 The second purpose is to find a method that requires less

learning time than previous studies of [13] and [17]. For

this purpose, we compare the result in these reference with

the result obtained from the “first purpose” above.

 The third purpose is to show how to extend the function of

Pytorch with implementation of “BP algorithm with some

modifications like FTL-algo”. The parts of algorithm that

is not implemented in the original Pytorch needs to be

implemented by the user as its extension. However,

explanations how to implement them are not described in

the “official manuals” that are provided by Pytorch

developers. This paper shows how to achieve this for

above purpose in Pytorch. Most Pytorch users have less

knowledge and programming skills of Pytorch developers.

Therefore, the descriptions in this paper should be useful

information for most Pytorch users who want to

implement parts of algorithm that are not implemented in

the original Pytorch.

2. 3-Layered perceptron

2.1. Overview

A 3-layered perceptron (hereinafter referred as “MLP”)

consists of three layers. The first layer is the input layer, the

last layer is the output layer, and the one between them is

called the hidden layer. Values are input to the input layer.

Each neuron in the hidden layer and the output layer is fully

connected to all the neurons in the previous layer through

weights, and signals are input from the input layer and output

to the output layer through the hidden layer, as shown in Fig.

1.

𝑋𝑖 is called “inner potential” of the i-th neuron,

defined by Eq. (1) as the sum of the input signals,

𝑋𝑖 = ∑ 𝜔𝑖𝑗 ∙ 𝑢𝑗
𝑁𝑝𝑟𝑒

𝑗=0 (1)

where 𝜔𝑖𝑗 is the value of synaptic weights from the j-th

neuron in the preceding layer to the i-th neuron, 𝑢𝑗 is the

output of the j-th neuron, and 𝑁𝑝𝑟𝑒 is the number of the

neurons in the preceding layer connected to the i-th neuron.

Therefore, the relationship between the input and the output of

each neuron is given by Eq. (2).

𝑜𝑖 = 𝑓(𝑋𝑖) (2)

Here, f is the activation function called “sigmoid function”

shown in Eq. (3). 𝑇𝑒𝑚𝑝 is a constant called the “temperature”

that determines the slope of f.

 𝑓(𝑥 ∶ 𝑇𝑒𝑚𝑝) =
1

1+exp （
−𝑥

𝑇𝑒𝑚𝑝
）

 (3)

2.2. BP Algorithm

The BP algorithm uses the output square error 𝐸𝑝 of the

output layer as an evaluation function, modifies the weights,

reducing it to achieve the smallest error value. The output

layer square error 𝐸𝑝 for the input teacher signal is defined

by Eq. (4),

𝐸𝑝 = ∑
(𝑡𝑖

𝑝
−𝑜𝑖

𝑝
)

2

2𝑖∈𝑂 (4)

where P is the set of input signals, O is the set of output layer

neuron, 𝑜𝑖
𝑝
 is the output value and 𝑡𝑖

𝑝
 is an ideal teacher

value of the i -th neuron in output layer.

The modification of the weight ω is based on the

steepest-descendants gradient rule so that the square error E in

Eq. (5) may decrease.

𝐸 = ∑ 𝐸𝑝𝑝∈𝑃 (5)

Let 𝜔𝑜𝑝𝑡 be the weight that minimizes 𝐸𝑝, and 𝜔𝑜𝑙𝑑 is the

current weight value. At this time, the weight must be updated

so 𝜔𝑜𝑙𝑑 approaches 𝜔𝑜𝑝𝑡 in learning. Therefore, the change

of ∆ω is obtained from the slope of 𝜔𝑜𝑙𝑑 and a new weight

is obtained from Eq. (6).

𝜔𝑛𝑒𝑤 = 𝜔𝑜𝑙𝑑 + ∆𝜔 (6)

Weight modification is shown in Eq. (7),

∆𝜔𝑖𝑗
𝑝

= −𝜂 ∙
𝜕𝐸𝑝

𝜕𝑤𝑖𝑗
 (7)

Fig.1 3-layered perceptron (MLP)

hidden layer

output layer

input layer

input output

技能科学研究，37 巻，2号 2020

- 45 -

where η is the learning rate.

Weight modification between hidden and output layers is

shown in Eq. (8) and (9),

∆𝜔𝑖𝑗
𝑝

= 𝜂 ∙ 𝛿𝑖
𝑝

∙ ℎ𝑗
𝑝
 (8)

𝛿𝑖
𝑝

= (𝑡𝑖
𝑝

− 𝑜𝑖
𝑝

) ∙ 𝑓′(𝑠𝑖
𝑝

) (9)

where ℎ𝑗
𝑝

 is output of the j-th neuron in hidden layer, and 𝑠𝑖
𝑝

is inner potential of i-th neuron in output layer. 𝑓′ is

derivative of sigmoid function.

Also, weight modification between input and hidden layers is

shown in Eq. (10) and (11),

∆𝜔̂𝑗𝑘
𝑝

= 𝜂 ∙ 𝜎𝑗
𝑝

∙ 𝑖𝑘
𝑝

 (10)

𝜎𝑗
𝑝

= (∑ 𝛿ℎ
𝑝

∙ 𝜔ℎ𝑗) ∙ 𝑓′(𝑥𝑗
𝑝

) (11)

where𝑖𝑘
𝑝

 is k-th neuron output in input layer, 𝜔ℎ𝑗 is weight

value between j-th neuron in hidden layer and h-th neuron in

output layer, and 𝑥𝑗
𝑝

is inner potential of j-th neuron in hidden

layer.

In this research, modification value obtained from each input

signal 𝑝 ∈ 𝑃 is added, and when all input signal are input,

the modification is executed.

Then, weight modification is repeated until condition as

shown in Eq. (12).

max
𝑝∈𝑃,𝑖∈𝑂

(𝑡𝑖
𝑝

− 𝑜𝑖
𝑝

)
2

< 𝑒𝑜
2 (12)

where 𝑒𝑜 is called output error in a learning phase. If a

learning satisfies condition in Eq. (12), the learning ends and

will be called “successful”. Otherwise, learning is called to be

“failed”.

2.3. Fault Model

As an MLP is composed by neurons and weights, faults can

occur in three places such as neuron, weight line, and weight

as shown in Fig. 2.

In this paper, there are three assumptions concerning faults

in the elements of MLPs, which are shown in Fig.2, are

described as follows.

Assumption 1: (the range of faults）

Faults occur only at neurons in hidden and output layers also

weights. Disconnection of an interconnecting link is

considered a weight or a neuron fault that stuck at 0.

Neurons in the input layer are fault-free because if an MLP

is implemented in hardware, they are only terminals that

transmit input signals to weights between the input and hidden

layers so they are simple circuits and the fault possibility

considered extremely low.

Assumption 2:(the value of weight)

The value of weight is assumed to be in the range from –1 to

1, regardless whether there is a fault or not.

Assumption 3: (the output value of a neuron fault）

The value of neuron is assumed to be in the range from 0 to

1, regardless whether there is a fault or not.

2.4. FTL-algo

The core part of FTL-algo is the same as normal BP

algorithm. However, modified or additional parts compared to

the normal BP algorithm are listed as follows.

1. The sigmoid function 𝑓𝑜 of a neuron in the output layer is

defined by Eq. (13) below. The temperature 𝑇𝑒𝑚𝑝 of the

sigmoid function 𝑓𝑜 is calculated using Eq. (14), where

𝑁𝑙𝑚 is a parameter of positive integer, that is the degree of

fault-tolerance,𝑒𝑜 is the maximum value of output error

that can be regarded as “successful” fault-tolerant learning

with 𝑒𝑜 = 0.1

𝑓𝑜(𝑥) =
1

(1+𝑒
−𝑥

𝑇𝑒𝑚𝑝)

 (13)

𝑇𝑒𝑚𝑝 =
𝑁𝑙𝑚

ln(𝑒0
−1−1),

=
𝑁𝑙𝑚

ln 9
 (14)

2. The sigmoid function 𝑓ℎ of a neuron in hidden layer is

shown in Eq. (15), which is equivalent with normal

sigmoid function.

𝑓ℎ(𝑥) =
1

(1+𝑒−𝑥)
 (15)

3. If a weight value to be modified is greater (less) than

1(–1), it is set to 1(–1) to make it in the range from 1 to 1

which is called “ 𝑊|1| -process”. With “ 𝑊|1| -process”,

absolute value of weight is 1 or less.

The following is proved in Reference [12].

Fig.2 Elements in an MLP

neuron

weight
fan out

weight link

Fig.2 Elements in an MLP

JOURNAL OF POLYTECHNIC SCIENCE VOL. 37, NO. 2 2020

- 46 -

Let F be any multiple faults whose index set is

(𝑁̂𝐹 ,∪𝑘=1
𝑚 𝑊̂𝐹

𝑘), where 𝑁̂𝐹 is a set of indices of neuron faults

in hidden layer, and 𝑊̂𝐹
𝑘 is a set of indices of weight faults

which are connected to the k-th neuron in the output layer.

 The MLP with m output neurons achieved by a successful

FTL-algo learning is fault-tolerant to F if Eq. (16) is satisfied.

|𝑁̂𝐹| + 2|𝑊̂𝐹
𝑘| − |𝑁̂𝐹 ∩ 𝑊̂𝐹

𝑘| ≤ (𝑁𝑙𝑚 − 1) (16)

3. Results and Programming

3.1. Research Environments

In order to run DLFWs, NVIDIA CUDA and cuDNN (cuda

Deep Neural Network) deep learning libraries must be

installed. The requirement condition to run cuDNN is that

CUDA version is 7.0 or higher, and GPU architecture is

Kepler microarchitecture with compute capability 3.0 or

higher[18]. On this research, we use NVIDIA GeForce GTX

1070 with compute capability 6.1.

We create two DLFW environments in a Linux PC and in a

Windows PC as shown in Table 1. For this purpose, various

methods were studied so that the two DLFW environments

could be constructed on a single PC. Each DLFW

environment is created by using virtualenv[19], a virtual

environment tool to create isolated Python environment. With

virtualenv, it is possible to build an independent virtual

environment for each module, package, and Python

version[20].

3.2. Dataset

In this research, the Optical Recognition of Handwritten

Digits dataset[21] (handwritten digit dataset), that was also

used in the previous researches [13] and [17], is used. The

samples are shown in Fig. 3. Each pattern consists

1024(32x32) bits where black = 1 and white = 0, and there are

1934 patterns included.

 The teacher data is converted to the SECDED code by H4

matrix as shown in Eq. (17). In here, fault tolerance is up to

one neuron in output layer.

𝐻4 = [

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

] (17)

3.3. Computation Result

3.3.1. Basic Parameters

Table 2 shows parameters used in our simulations.

Furthermore, Table 3 shows the minimum numbers of neurons

in hidden layer called 𝑀𝑖𝑛. 𝑁ℎ for the succeeded fault

tolerance learnings when fault tolerance degree 𝑁𝑙𝑚 values

are 3, 6, 9 and 12, respectively. These values were discovered

by the previous study[13].

In our simulations detailed below, the number of neurons in

hidden layer 𝑁ℎ is set to the value of 𝑀𝑖𝑛. 𝑁ℎ correspond to

the case of 𝑁𝑙𝑚 as shown in Table 3.

Table 4 FTL-algo learning time and Win/Lin

Nh

Keras Pytorch

Linux(s)
Windo

ws(s)
Win/Lin Linux(s)

Windo

ws(s)
Win/Lin

53 0.186 0.308 1.66 0.00160 0.00817 5.11

107 0.191 0.305 1.60 0.00157 0.00554 3.53

167 0.187 0.309 1.65 0.00154 0.00558 3.62

226 0.188 0.310 1.65 0.00156 0.00559 3.58

Table 2 Simulation parameters

 training epoch 1000

learning rate η 0.01

Learning stop 𝑒𝑜 0.1

Batch size 32

Table 3 𝑁𝑙𝑚 and 𝑀𝑖𝑛. 𝑁ℎ relation

 𝑁𝑙𝑚 3 6 9 12

𝑀𝑖𝑛. 𝑁ℎ 53 107 167 226

Table 1 DLFW environment

 Windows Linux

OS Windows 7 (64 bit) Ubuntu 16.04 LTS

CPU
AMD Fx™-8320

eight core

AMD A10 5800K

GPU
NVIDIA GeForce

GTX 1070

NVIDIA GeForce

GTX 1070

GPU RAM 8 GB 8 GB

GPGPU

Platform

CUDA 9.0 / cuDNN

7.1

CUDA 9.0 / cuDNN

7.0

Programming

Language

Python 3.6 Python 3.6

DLFW

Tensorflowgpu

1.8.0/

Keras 2.1.16

Pytorch 1.0.0

Tensorflowgpu

1.8.0/

Keras 2.1.16

Pytorch1.2.0

Fig.3 Samples in the Dataset

技能科学研究，37 巻，2号 2020

- 47 -

3.3.2. Comparison among two DLFWs on two OSs

Table 4 shows the average learning time per epoch of

FTL-algo in each DLFW on Linux and Windows. “Win/Lin”

in the table means “(learning time on Windows)/(learning

time on Linux)”

Table 4 shows that learning time of Keras and Pytorch on

Windows are respectively about 1.6 times and about 3 to 5

times as much as Linux.

The first possible cause is the difference in the GUI display

on each OS. In other words, GUI display on Windows cannot

be stopped due to its OS specification, so GPU memories are

consumed by the display. On the other hand, GUI display is

stopped on Linux.

Another cause concerning Keras is that NVIDIA driver on

Windows has some latency time in CUDA kernel when its

API is called to run, so it took some time and does not

dispatch immediately[22].

3.3.3. Comparison between normal BP algorithm and

FTL-algo

Table 5 shows the average learning time per epoch for

normal BP algorithm.

The values of ((FTL-algo time)–(normal BP time)) /

(FTL-algo time)・100 (%) calculated from Table 4 and 5 are

shown in Table 6.

Table 6 shows the following.

 The increase of the computation time of FTL-algo

compared to normal BP algorithm is less than 49% per

epoch.

 Especially when Nh is 107 or more, the computation time

on Windows is less than 8 percent. Therefore, the

difference between these two algorithms is not the main

reason of computation time difference between the two

OSs.

 These results show that Linux environments are better than

ones on Windows in term of learning time, so only execution

results on Linux are shown below.

3.3.4. Comparison Result with Previous Researches

The data of average learning time per epoch on our Linux

Table 5 Learning time per epoch for normal BP algorithm

Nh
Keras Pytorch

Linux(s) Windows(s) Linux(s) Windows(s)

53 0.0967 0.267 0.00141 0.00522

107 0.0976 0.297 0.00145 0.00575

167 0.0967 0.299 0.00140 0.00518

226 0.104 0.301 0.00144 0.00563

Table 6 Values of ((FTL-algo time)–(normal BP time)) /

(FTL-algo time)・100 (%)

Nh
Keras Pytorch

Linux (%) Windows (%) Linux (%) Windows (%)

53 48.0 13.3 11.9 36.1

107 48.9 2.62 7.64 3.79

167 48.2 3.24 9.09 7.17

226 44.7 2.90 7.69 0.716

Table 7 Average learning time per epoch (Linux)

Nh CUDA[13](s) Chainer[17](s) Keras(s) Pytorch(s)

53 0.00153 0.0129 0.186 0.00160

107 0.00246 0.0129 0.191 0.00157

167 0.00371 0.0132 0.187 0.00154

226 0.00493 0.0130 0.188 0.00156

Table 9 Data given by dividing each method value in

Table 7 by each Pytorch value

Nh CUDA[13] Chainer[17] Keras Pytorch

53 0.684 5.75 45.5 1.00

107 1.65 8.63 62.7 1.00

167 2.58 9.16 64.9 1.00

226 3.29 8.65 63.5 1.00

Table 8 Programming environment in [17]

OS Ubuntu 16.04 LTS

CPU AMD A10 5800K

GPU NVIDIA GeForce GTX 1070

GPU RAM 8 GB

GPGPU Platform CUDA 8.0.61 / CuPy 5.1.0

Programming

Language

Python 3.5.2

DLFW Chainer 5.1.0

Fig.4 Relation between average learning time per

epoch and Nh

JOURNAL OF POLYTECHNIC SCIENCE VOL. 37, NO. 2 2020

- 48 -

environments and in previous studies [13] and [17] are shown

in Table 7. In [17], the methods of both previous studies are

executed on the environment shown in Table 8, and their data

are quoted from [17]. Fig.4 shows relation between average

learning time per epoch and Nh by data in Table 7. Table 9

shows data given by dividing each method value in Table 9 by

each Pytorch value.

Tables 7 and 9 and Fig.4 show the following.

1. Among these four methods, the learning time per epoch of

Pytorch is the smallest when Nh is 107 or more.

2. The learning time of CUDA[13] is increasing along with the

increase of Nh.

3. On the other hand, the learning time of each DLFW is

almost a constant regardless of Nh.

4. When Nh is 107 or more, the learning time of CUDA[13] is

longer than Pytorch.

5. The learning time of Keras is the largest, about 65 times as

much as Pytorch.

The main reason for the long learning time in Keras (5-th

item mentioned above) is that only Pytorch has special

features which is called “CUDA SEMANTIC”[23], which is

explained as follows.

 For Example, concerning torch.cuda.synchronize() feature,

when data is transferred from a CPU to a GPU by using

this feature, Pytorch automatically performs necessary

synchronization, so data transfer and calculation for a

learning can be performed simultaneously. Also, with

pin_memory() feature, the speed of data transfer from a

CPU to a GPU is increased.

 Furthermore, with torch.cuda.empty_cache() feature,

unused cache memory is released from Pytorch to achieve

higher speed.

In addition, the main reason for 4-th item mentioned above is

that programming code in CUDA[13] is developed according to

GPU and CUDA technologies in 2013, although version–up

speed of Pytorch almost catches up with the progress speed of

these recent technologies, including CUDA SEMANTIC as

mentioned above. In other words, if an optimized CUDA C

FTL-algo program which uses recent technologies sufficiently

could be developed, it might be faster than a FTL-algo

program in Pytorch.

3.4. Programming Development

3.4.1. Overview

In the following, programming development process of

each part about difference between FTL-algo and BP

algorithm on Pytorch environment is described. Detail of the

same process on Keras environment is omitted because Keras

learning time is longer than Pytorch.

Most of the contents described in this section are not

explained in the official manuals of Pytorch. Therefore, this

section should be useful information for most Pytorch users

who want to implement parts of algorithm that are not

implemented in the original Pytorch.

3.4.2. Sigmoid function with temp parameter

（tempsigmoid）

In Pytorch, activation function is defined in activation.py

file which is located inside nn.modules. The difference with

Keras is that each optimizer is defined in each separate file.

Pytorch also has an automatic differentiation feature like

Keras that is called “autograd”.

We need to create the new activation function called

tempsigmoid. Here, as shown in Fig.5, Pytorch tempsigmoid

activation function is inherited from sigmoid function as same

as Keras.

About this part, the official manual has no explanation to

modify and describe this function. Therefore, authors

consulted with developers via the web community and tried

various methods until success.

Fig.6 Description of applied tempsigmoid function

Fig.5 Description of tempsigmoid function

Fig.7 Description of WeightClipper class

技能科学研究，37 巻，2号 2020

- 49 -

In Pytorch, the computation process in tempsigmoid function

has to be “torch tensor” type. The partial differentiation is

automatically done by inheriting sigmoid function with

“return” code. Fig.6 shows how to call tempsigmoid in

Pytorch.

3.4.3. Weight absolute constraint (W|1|-process)

Unlike Keras, Pytorch have no constraint feature. Because

of this, we need to create new object class for it in Pytorch. As

shown in Fig.7, this object class is called “WeightClipper”.

As shown in Fig.8, the WeightClipper class is defined as the

“clipper”s parameter, and is executed by “apply” code written

in training model.

3.4.4. Stop condition process

Unlike Keras, Pytorch has no function to stop learning

corresponding to the condition of Eq.(12). Therefore, it is

necessary to define new class for it.

About this part, there is no explanation in the official manual.

Therefore, authors consulted with developers via web

community, and tried various methods until success in

developing this part.

Fig.9 shows the “StopatLossValue” class defined in Pytorch.

Here, check is performed at the end of epoch, and if the

condition is satisfied, training will be forcedly terminated.

Furthermore, since StopatLossValue class is a usual object

class, it is called as shown in Fig.10.

3.4.5. Dataset preparation

On this research, it is necessary to convert the dataset from

decimal to 32x32 bit array binary. In addition, the dataset that

will be used in DLFWs need to be convert to tensor data type

which has multi-dimensional arrays.

In Keras, this convert is made automatically by numpy

library. On the other hand, since Pytorch uses torch.tensor(),

the descriptions of the procedure for preprocessing to read

training data is needed. Because there is no explanation in the

official manual for it, authors developed this part with trial

and error, consulting with the developers via web community.

The discoveries are shown below.

 Conversion from numpy type to tensor type,

“torch.from.numpy().float()” is required as shown in

Fig.11.

 Furthermore, each description of

“torch.utils.data.TensorDataset” and

“torch.uitls.data.DataLoader” is also required as shown in

Fig.12. Particularly, in order to find appropriate values for

each parameter of “torch.utils.data.DataLoader”, authors

through trial and error, checked the data size of output data

variables, and checked data values correlation in detail.

These reasons are listed below.

─ Depending on the value of each parameter given to

torch.utils.data.DataLoader, the size of output data

Table 10 Coding complexity on Keras and Pytorch

Number of

lines of code

Number of

modified files

Programming

language

Keras 109 4 Python

Pytorch 141 1 Python

Fig.11 Description of torch.from.numpy().float()

Fig.12 Description of torch.utils.data.TensorDataset

and torch.utils.data.DataLoader

Fig.10 Description of applied StopatLossValue

Fig.8 Description of applied WeightClipper

Fig.9 Description of StopatLossValue

JOURNAL OF POLYTECHNIC SCIENCE VOL. 37, NO. 2 2020

- 50 -

variables in each process during training is changed. If

the sizes are not set correctly, an error occurs and the

program cannot be executed.

─ According these parameter values, output data values in

each process during training also change.

─ Each process during training is like a black-box.

3.4.6. Programming code comparison

Table 10 shows data about programming codes on Pytorch

and Keras.

Table 10 shows the following.

 Programming in Keras has fewer lines of codes compared to

Pytorch. The reason is that Keras has fewer lines to create

model training. Furthermore, in Keras the code to execute a

training can be described with one line of the “model.fit()”

function. On the other hand, creation process for training

model in Pytorch is more complicated.

 Regarding the development of FTL-algo, there are more

modified files in Keras than Pytorch. Because in Keras the

files are divided for each function, so that modifying for

each file is necessary.

4. Conclusions

In this research, we show how to implement and execute

FTL-algo using DLFWs of Keras and Pytorch. As a result, we

have discovered the following.

 Linux environments can run FTL-algo faster than

Windows environments.

 Pytorch can execute FTL-algo faster than Keras.

 The number of lines of program code in Keras is fewer

than Pytorch. However, the number of files which should

be modified in Keras is more than Pytorch. In other words,

the programming difficulty between both DLFWs is almost

the same.

Based on the above, related to “the first purpose”

mentioned in Section “1.2 Purpose”, regarding the

implementation of FTL-algo with two DLFWs (Keras and

Pytorch) on two OSs (Linux and Windows), we found that the

most optimal environment is Pytorch on Linux environment.

Next, comparing the results mentioned above with the

methods in [13] and [17], we discovered that Pytorch

environment on Linux can execute FTL-algo faster than these

two previous studies. In other words, related to “the second

purpose” mentioned in Section 1.2, we discovered a method

that requires less learning time than both prior researches.

In addition, related to “the third purpose” mentioned in

Section 1.2, how to develop and execute “BP algorithms with

some modifications like FTL-algo” on Pytorch are shown.

Most of these explanations are not included in the official

manual provided by Pytorch developer.

As our future works, we will contact each DLFW developer

to report this research result which is “new function” that can

be implemented in each DLFW so that it could be considered

to be implemented in the new version upgrade.

Keywords: Deep Learning Framework, Keras, Pytorch, Fault

tolerant BP learning, Multi-layered Perceptron, GPGPU

Acknowledgements

We sincerely thank the developers of each DLFW for their

support.

We also would like to express our sincere appreciation to K.

Takada for writing and others.

References

[1] D.E. Rumelhart, G.E. Hinton, and R.J. Williams: “Learning

Representations by Back-Propagating Errors”, Nature, vol.323,

pp.523-535, (1986).

[2] D.S. Phatak and I. Koren,: “Compete and Partial Fault

Tolerance of Feedforward Neural Nets,” IEEE Transactions on

Neural Networks, vol.6, No. 2, pp.446-456, (1995).

[3] J. Nijhuis, B. Hoefflinger, A.v. Schaik, and L. Spaanenburg:

“Limits to the Fault-Tolerance of a Feedforward Neural

Network with Learning”, FTCS, pp.228-235, (1990).

[4] I. Takanami and Y. Oyama: “A Novel Learning Algorithm

which Makes Multilayer Neural Networks

Multiple-Weight-Fault-Tolerant”, IEICE Transactions on

Information and Systems, vol.E86-D, no.12, pp.2536-2543,

(2003).

[5] R.P. Lippmann: “An Introduction to Computing with Neural

Nets”, IEEE ASSP Magazine vol.4, no.2, pp.4-22, (1987).

[6] C. Torres-Huitzil and B. Girau: “Fault and Error Tolerance in

Neural Networks: a Review”, IEEE Access, vol.5,

pp.17322-17341, (2017).

[7] S. Srinivasan and C.F. Stevens: “Robustness and Fault

Tolerance Make Brains Harder to Study”, BMC Biology, vol.9,

pp.46-48, (2011)

[8] T. Sejnowksi and T. Delbruck: “The Language of the Brain”,

Scientific American, vol.307, pp. 54-59, (2012).

[9] W. Maass: “To Spike or not to Spike: That is the Question”,

Proceedings of the IEEE, vol.103, no.12, pp.2219-2224, (2015).

[10] P. Chandra and Y. Singh: “Fault Tolerance of Feedforward

Artificial Neural Networks - a Framework of Study”,

Proceedings of the International Joint Conference of Neural

Networks, vol.1, pp.489-494, (2003).

[11] S.E. Fahlman: “Neural Nets Learning Algorithms and

Benchmarks Database”, maintained by S.E. Fahlman at the

Computer Science Department., Carnegie Mellon University.

技能科学研究，37 巻，2号 2020

- 51 -

[12] T. Horita, I. Takanami, and M. Mori: “Learning Algorithms

which Make Multilayer Neural Networks

Multiple-Weight-and-Neuron-Fault Tolerant”, IEICE

Transactions on Information and Systems, vol.E91-D, no.4,

pp.1168-1175, (2008).

[13] T. Horita, I. Takanami, M. Akiba, N. Terauchi, T. Kanno: “A

GPGPU-based Acceleration of Fault-Tolerant MLP Learnings”,

Proceedings of IEEE 8th International Symposium on

Embedded Multicore/Manycore SoCs, pp.245-252, (2014).

[14] V. Amatya, A. Vishnu, C. Siegel, and J. Daily: “What does Fault

Tolerant Deep Learning from MPI”, Proceedings of the 24th

European MPI User’s Group Meeting Article, no.13, pp.1-11,

(2017).

[15] V. Duddu, D.V. Rao, and V.E. Balas: “Adversarial Fault

Tolerant Training for Deep Neural Networks”, ArXiv,

abs/1907.03103, (2019).

[16] H. Xu, Z. Chen, W. Wu, Z. Jin, S. Kuo and M. Lyu: “NV-DNN:

Towards Fault-Tolerant DNN Systems with N-Version

Programming", Proceedingsof49th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks

Workshops (DSN-W), pp. 44-47, (2019).

[17] K. Takahashi: “A Research on a Deep Learning Framework (in

Japanese)”, graduation thesis in Polytechnic University of

Japan, (2019).

[18] “NVIDIA® GPU Deep Learning（深層学習）開発環境構築

情 報 ” in Arcbrain Inc. home page,

https://arcbrain.jp/support/NVIDIA/Deep_Learning/, (2020)

[19] I. Bicking: “virtualenv”, https://virtualenv.pypa.io/en/latest/,

(2018).

[20] “ 仮 想 環 境 ” in Python Japan home page,

https://www.python.jp/install/windows/virtualenv.html, (2020).

[21] D. Dua, and C. Graff: “UCI Machine Learning Repository”,

Irvine, CA: University of California, School of Information and

Computer Science, http://archive.ics.uci.edu/ml, (2019).

[22] NVIDIA inc.: ”Use a Suitable Driver Model”, NVIDIA CUDA

Installation Guide For Microsoft Windows,

DU-05349-001_v10.2,pp.8, (2019)

[23] Torch Contributors: “CUDA Semantics”, Pytorch,

https://pytorch.org/docs/stable/notes/cuda.html, (2019)

（原稿受付 2020/05/14，受理 2020/07/03）

*Astriwindusari, 学士（工学）

Surakarta Vocational Training Centre, Jl. Bhayangkara No.38,

Panularan, Laweyan, Kota Surakarta, Jawa Tengah 57149, Indonesia

Email: astriwindusari@hotmail.com

*堀田 忠義, 博士（工学）

職業能力開発総合大学校, 能力開発院, 〒187-0035 東京都小

平市小川西町 2-32-1

Tadayoshi Horita, Faculty of Human Resources Development,

Polytechnic University of Japan, 2-32-1 Ogawa-Nishi-Machi,

Kodaira, Tokyo 187-0035.

Email: horita@uitec.ac.jp

*秋葉 将和, 博士（工学）

職業能力開発総合大学校, 能力開発院, 〒187-0035 東京都小

平市小川西町 2-32-1

Masakazu Akiba, Faculty of Human Resources Development,

Polytechnic University of Japan, 2-32-1 Ogawa-Nishi-Machi,

Kodaira, Tokyo 187-0035.

Email: akiba@uitec.ac.jp

