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1. Introduction 

 

1.1. Background 

An artificial neural network (hereinafter referred as “neural 

network”) is an electrical circuit that imitates human brain 

nervous systems. It consists of artificial nodes called neurons. 

In a multilayer neural network, the previous layer node is 

interconnected with next layer by direct links called 

connection weights. 

Neural networks have been studied since 1943 by 

McCulloch et al. McCulloch and Pitts were the first to 

implement a human brain in a hardware model. In 1985, 

Rosenblatt proposed a simple perceptron that have the ability 

to learn. In 1986, Rumelhart et al. are the first who proposed 

the Back Propagation (hereinafter referred as “BP”) 

algorithm[1].  

Since then, the neural network field has developed and is 

extending become a new field called Artificial Intelligence 

(AI). Deep learning is one of AI technology and was 

developed based on multilayer neural networks. 

On the other hand, the world of computer hardware is also 

evolving. A Graphics Processing Units (GPU) is a processor 

that specialized in image processing. GPUs are composed of 

thousands of cores for parallel processing so it can display 

images in screen. Nowadays, GPUs can be used for 

general-purpose programming as well as graphics. This is 

called GPGPU (General Purpose Computing on GPUs), and 

with the use of GPU high-speed processing by parallel 

computation could be obtained. In order to make GPGPU 

programming easier, NVIDIA inc. has developed a platform 

called CUDA (Compute Unified Device Architecture).  

In this research, a neural network will become fault-tolerant 

when each part of a neural network such as neuron, 

connection weight and others is realized to hardware by an 

analog or a digital circuit. The set of connection weight values 

uses the set of values obtained by the fault-tolerant learning as 

described later. Therefore, the fault tolerance for failure during 

learning phase is out of range. In Addition, a neural network 

for solving complex problems is complex in hardware too so 

high fault tolerance is highly expected. 

Various studies on fault tolerance in multilayer neural 

networks have been conducted. References [2] to [11] are the 

examples. As a previous study of this research, authors 

proposed a fault-tolerant algorithm called “Deep LM” which 

make 3-layered-perceptrons multiple-weights-and-neurons 

fault tolerant[12]. The algorithm name hereinafter will be called 

“FTL-algo” so it will not be confused with the deep learning. 

FTL-algo is based on the BP algorithm with some 

modifications. With FTL-algo, it has been proved that a 

3-layered-perceptrons with 100% fault-tolerant can be 

realized for multiple weight-and-neuron faults. If the value of 

the degree of fault tolerance becomes bigger, FTL-algo 

learning time also becomes enormous bigger than normal BP 

algorithm. Therefore, authors developed FTL-algo with 

CUDA C programming and proposed acceleration method 

using GPGPU[13].  

In 2017, Amatya et al. studied fault tolerance for extended 

deep learning framework(hereinafter referred as “DLFW”) 

called MaTEx-Caffe that used in a parallel computing 

environment called Message Passing Interface (MPI)[14]. In 

2019, Duddu et al. studied fault tolerant learning for deep 

neural network by Tikhonov regularization using Pytorch[15]. 

In addition, Xu et al. studied fault tolerance for deep learning 

with applied N-version programming using Pytorch[16]. These 

three studies imply that researches on fault tolerance on 

DLFWs have begun in recent years.  

Researches on implementations of fault-tolerant learning 

algorithms including FTL-algo using GPGPU-based 

accelerations(including DLFWs) to find more efficient 

methods for implementing fault-tolerant in multilayer neural 

networks is highly desired in discovery. The previous 

researches [13] and [17] described acceleration of FTL-algo 

using GPGPU. However, this kind of research has not been 

found in previous studies except [13] and [17]. 
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1.2. Purpose 

The purpose of this research are listed below. 

 The first purpose is to select the optimal environment 

among two DLFWs on two OSs to implement FTL-algo. 

The two DLFWs are Keras Tensorflow(hereinafter 

referred as “Keras”) and Pytorch, and the two OSs are 

Linux and Windows. The programming development for 

FTL-algo is performed in each environment, and the best 

one is selected from the viewpoint of calculation time and 

difficulty of programming.  

 The second purpose is to find a method that requires less 

learning time than previous studies of [13] and [17]. For 

this purpose, we compare the result in these reference with 

the result obtained from the “first purpose” above.  

 The third purpose is to show how to extend the function of 

Pytorch with implementation of “BP algorithm with some 

modifications like FTL-algo”. The parts of algorithm that 

is not implemented in the original Pytorch needs to be 

implemented by the user as its extension. However, 

explanations how to implement them are not described in 

the “official manuals” that are provided by Pytorch 

developers. This paper shows how to achieve this for 

above purpose in Pytorch. Most Pytorch users have less 

knowledge and programming skills of Pytorch developers. 

Therefore, the descriptions in this paper should be useful 

information for most Pytorch users who want to 

implement parts of algorithm that are not implemented in 

the original Pytorch. 

 

2. 3-Layered perceptron 

 

2.1. Overview 

A 3-layered perceptron (hereinafter referred as “MLP”) 

consists of three layers. The first layer is the input layer, the 

last layer is the output layer, and the one between them is 

called the hidden layer. Values are input to the input layer. 

Each neuron in the hidden layer and the output layer is fully 

connected to all the neurons in the previous layer through 

weights, and signals are input from the input layer and output 

to the output layer through the hidden layer, as shown in Fig. 

1. 

𝑋𝑖  is called “inner potential” of the i-th neuron, 

defined by Eq. (1) as the sum of the input signals,  

 

𝑋𝑖 = ∑ 𝜔𝑖𝑗 ∙ 𝑢𝑗
𝑁𝑝𝑟𝑒

𝑗=0    (1) 

 

where 𝜔𝑖𝑗  is the value of synaptic weights from the j-th 

neuron in the preceding layer to the i-th neuron, 𝑢𝑗  is the 

output of the j-th neuron, and 𝑁𝑝𝑟𝑒 is the number of the 

neurons in the preceding layer connected to the i-th neuron. 

Therefore, the relationship between the input and the output of 

each neuron is given by Eq. (2).  

 

𝑜𝑖 = 𝑓(𝑋𝑖)    (2) 

 

Here, f is the activation function called “sigmoid function” 

shown in Eq. (3). 𝑇𝑒𝑚𝑝 is a constant called the “temperature” 

that determines the slope of f.  

 

    𝑓(𝑥 ∶ 𝑇𝑒𝑚𝑝) =  
1

1+exp （
−𝑥

𝑇𝑒𝑚𝑝
）

 (3) 

 

2.2. BP Algorithm 

The BP algorithm uses the output square error 𝐸𝑝 of the 

output layer as an evaluation function, modifies the weights, 

reducing it to achieve the smallest error value. The output 

layer square error 𝐸𝑝 for the input teacher signal is defined 

by Eq. (4),  

𝐸𝑝 =  ∑
(𝑡𝑖

𝑝
−𝑜𝑖

𝑝
)

2

2𝑖∈𝑂  (4) 

where P is the set of input signals, O is the set of output layer 

neuron, 𝑜𝑖
𝑝
 is the output value and 𝑡𝑖

𝑝
 is an ideal teacher 

value of the i -th neuron in output layer. 

The modification of the weight ω  is based on the 

steepest-descendants gradient rule so that the square error E in 

Eq. (5) may decrease.  

𝐸 =  ∑ 𝐸𝑝𝑝∈𝑃  (5) 

Let 𝜔𝑜𝑝𝑡 be the weight that minimizes 𝐸𝑝, and 𝜔𝑜𝑙𝑑 is the 

current weight value. At this time, the weight must be updated 

so 𝜔𝑜𝑙𝑑  approaches 𝜔𝑜𝑝𝑡 in learning. Therefore, the change 

of ∆ω is obtained from the slope of 𝜔𝑜𝑙𝑑  and a new weight 

is obtained from Eq. (6). 

𝜔𝑛𝑒𝑤 =  𝜔𝑜𝑙𝑑 + ∆𝜔 (6) 

Weight modification is shown in Eq. (7),  

∆𝜔𝑖𝑗
𝑝

=  −𝜂 ∙  
𝜕𝐸𝑝

𝜕𝑤𝑖𝑗
 (7) 

Fig.1  3-layered perceptron (MLP) 

hidden layer 

output layer 

input layer 

input output 
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where η is the learning rate. 

Weight modification between hidden and output layers is 

shown in Eq. (8) and (9),  

∆𝜔𝑖𝑗
𝑝

=  𝜂 ∙ 𝛿𝑖
𝑝

∙ ℎ𝑗
𝑝
 (8) 

𝛿𝑖
𝑝

=  (𝑡𝑖
𝑝

− 𝑜𝑖
𝑝

) ∙ 𝑓′(𝑠𝑖
𝑝

) (9) 

where ℎ𝑗
𝑝

 is output of the j-th neuron in hidden layer, and 𝑠𝑖
𝑝
 

is inner potential of i-th neuron in output layer. 𝑓′  is 

derivative of sigmoid function. 

Also, weight modification between input and hidden layers is 

shown in Eq. (10) and (11),  

∆𝜔̂𝑗𝑘
𝑝

=  𝜂 ∙ 𝜎𝑗
𝑝

∙ 𝑖𝑘
𝑝

 (10) 

𝜎𝑗
𝑝

=  (∑ 𝛿ℎ
𝑝

∙ 𝜔ℎ𝑗) ∙ 𝑓′(𝑥𝑗
𝑝

) (11) 

where𝑖𝑘
𝑝

 is k-th neuron output in input layer, 𝜔ℎ𝑗 is weight 

value between j-th neuron in hidden layer and h-th neuron in 

output layer, and 𝑥𝑗
𝑝

is inner potential of j-th neuron in hidden 

layer.  

In this research, modification value obtained from each input 

signal 𝑝 ∈ 𝑃 is added, and when all input signal are input, 

the modification is executed. 

Then, weight modification is repeated until condition as 

shown in Eq. (12). 

max 
𝑝∈𝑃,𝑖∈𝑂

(𝑡𝑖
𝑝

− 𝑜𝑖
𝑝

)
2

< 𝑒𝑜
2 (12) 

where 𝑒𝑜  is called output error in a learning phase. If a 

learning satisfies condition in Eq. (12), the learning ends and 

will be called “successful”. Otherwise, learning is called to be 

“failed”. 

 

2.3. Fault Model 

As an MLP is composed by neurons and weights, faults can 

occur in three places such as neuron, weight line, and weight 

as shown in Fig. 2. 

In this paper, there are three assumptions concerning faults 

in the elements of MLPs, which are shown in Fig.2, are 

described as follows. 

Assumption 1: (the range of faults） 

Faults occur only at neurons in hidden and output layers also 

weights. Disconnection of an interconnecting link is 

considered a weight or a neuron fault that stuck at 0.  

Neurons in the input layer are fault-free because if an MLP 

is implemented in hardware, they are only terminals that 

transmit input signals to weights between the input and hidden 

layers so they are simple circuits and the fault possibility 

considered extremely low. 

Assumption 2:(the value of weight) 

The value of weight is assumed to be in the range from –1 to 

1, regardless whether there is a fault or not. 

Assumption 3: (the output value of a neuron fault） 

The value of neuron is assumed to be in the range from 0 to 

1, regardless whether there is a fault or not. 

 

2.4. FTL-algo 

The core part of FTL-algo is the same as normal BP 

algorithm. However, modified or additional parts compared to 

the normal BP algorithm are listed as follows.  

1. The sigmoid function 𝑓𝑜 of a neuron in the output layer is 

defined by Eq. (13) below. The temperature 𝑇𝑒𝑚𝑝 of the 

sigmoid function 𝑓𝑜 is calculated using Eq. (14), where 

𝑁𝑙𝑚 is a parameter of positive integer, that is the degree of 

fault-tolerance,𝑒𝑜 is the maximum value of output error 

that can be regarded as “successful” fault-tolerant learning 

with 𝑒𝑜 = 0.1 

𝑓𝑜(𝑥) =
1

(1+𝑒
−𝑥

𝑇𝑒𝑚𝑝)

 (13) 

 

𝑇𝑒𝑚𝑝   =  
𝑁𝑙𝑚

ln(𝑒0
−1−1),

=
𝑁𝑙𝑚

ln 9
 (14) 

 

2. The sigmoid function 𝑓ℎ of a neuron in hidden layer is 

shown in Eq. (15), which is equivalent with normal 

sigmoid function.  

𝑓ℎ(𝑥) =
1

(1+𝑒−𝑥)
 (15) 

3. If a weight value to be modified is greater (less) than 

1(–1), it is set to 1(–1) to make it in the range from 1 to 1 

which is called “ 𝑊|1| -process”. With “ 𝑊|1| -process”, 

absolute value of weight is 1 or less. 

 

The following is proved in Reference [12]. 

Fig.2  Elements in an MLP 

neuron 

weight 
fan out 

weight link 

Fig.2  Elements in an MLP 
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Let F be any multiple faults whose index set is 

(𝑁̂𝐹 ,∪𝑘=1
𝑚 𝑊̂𝐹

𝑘), where 𝑁̂𝐹 is a set of indices of neuron faults 

in hidden layer, and 𝑊̂𝐹
𝑘 is a set of indices of weight faults 

which are connected to the k-th neuron in the output layer.  

 The MLP with m output neurons achieved by a successful 

FTL-algo learning is fault-tolerant to F if Eq. (16) is satisfied. 

|𝑁̂𝐹| + 2|𝑊̂𝐹
𝑘| − |𝑁̂𝐹 ∩ 𝑊̂𝐹

𝑘| ≤  (𝑁𝑙𝑚 − 1) (16) 

 

3.  Results and Programming 

 

3.1. Research Environments 

In order to run DLFWs, NVIDIA CUDA and cuDNN (cuda 

Deep Neural Network) deep learning libraries must be 

installed. The requirement condition to run cuDNN is that 

CUDA version is 7.0 or higher, and GPU architecture is 

Kepler microarchitecture with compute capability 3.0 or 

higher[18]. On this research, we use NVIDIA GeForce GTX 

1070 with compute capability 6.1. 

We create two DLFW environments in a Linux PC and in a 

Windows PC as shown in Table 1. For this purpose, various 

methods were studied so that the two DLFW environments 

could be constructed on a single PC. Each DLFW 

environment is created by using virtualenv[19], a virtual 

environment tool to create isolated Python environment. With 

virtualenv, it is possible to build an independent virtual 

environment for each module, package, and Python 

version[20].  

 

3.2. Dataset 

In this research, the Optical Recognition of Handwritten 

Digits dataset[21] (handwritten digit dataset), that was also 

used in the previous researches [13] and [17], is used. The 

samples are shown in Fig. 3. Each pattern consists 

1024(32x32) bits where black = 1 and white = 0, and there are 

1934 patterns included. 

 The teacher data is converted to the SECDED code by H4 

matrix as shown in Eq. (17). In here, fault tolerance is up to 

one neuron in output layer.  

𝐻4 = [

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

  1 0 0 0
  0 1 0 0
  0 0 1 0
  0 0 0 1

] (17) 

 

3.3. Computation Result 

3.3.1. Basic Parameters 

Table 2 shows parameters used in our simulations. 

Furthermore, Table 3 shows the minimum numbers of neurons 

in hidden layer called 𝑀𝑖𝑛. 𝑁ℎ  for the succeeded fault 

tolerance learnings when fault tolerance degree  𝑁𝑙𝑚 values 

are 3, 6, 9 and 12, respectively. These values were discovered 

by the previous study[13].  

In our simulations detailed below, the number of neurons in 

hidden layer 𝑁ℎ is set to the value of 𝑀𝑖𝑛. 𝑁ℎ correspond to 

the case of 𝑁𝑙𝑚 as shown in Table 3.  

 

 

Table 4  FTL-algo learning time and Win/Lin 

Nh 

Keras Pytorch 

Linux(s) 
Windo 

ws(s) 
Win/Lin Linux(s) 

Windo 

ws(s) 
Win/Lin 

53 0.186 0.308 1.66 0.00160 0.00817 5.11 

107 0.191 0.305 1.60 0.00157 0.00554 3.53 

167 0.187 0.309 1.65 0.00154 0.00558 3.62 

226 0.188 0.310 1.65 0.00156 0.00559 3.58 

 

Table 2  Simulation parameters 

 training epoch 1000  

learning rate η 0.01 

Learning stop 𝑒𝑜 0.1 

Batch size 32 

 

Table 3 𝑁𝑙𝑚 and 𝑀𝑖𝑛. 𝑁ℎ relation 

 𝑁𝑙𝑚 3 6 9 12  

𝑀𝑖𝑛. 𝑁ℎ 53 107 167 226 

Table 1  DLFW environment 

 Windows Linux 

OS Windows 7 (64 bit) Ubuntu 16.04 LTS 

CPU 
AMD Fx™-8320 

eight core 

AMD A10 5800K 

GPU 
NVIDIA GeForce 

GTX 1070 

NVIDIA GeForce 

GTX 1070 

GPU RAM 8 GB 8 GB 

GPGPU 

Platform 

CUDA 9.0 / cuDNN 

7.1 

CUDA 9.0 / cuDNN 

7.0 

Programming 

Language 

Python 3.6 Python 3.6 

DLFW 

Tensorflowgpu 

1.8.0/  

Keras 2.1.16 

Pytorch 1.0.0 

Tensorflowgpu 

1.8.0/  

Keras 2.1.16 

Pytorch1.2.0 

   

Fig.3  Samples in the Dataset 
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3.3.2. Comparison among two DLFWs on two OSs 

Table 4 shows the average learning time per epoch of 

FTL-algo in each DLFW on Linux and Windows. “Win/Lin” 

in the table means “(learning time on Windows)/(learning 

time on Linux)” 

Table 4 shows that learning time of Keras and Pytorch on 

Windows are respectively about 1.6 times and about 3 to 5 

times as much as Linux. 

The first possible cause is the difference in the GUI display 

on each OS. In other words, GUI display on Windows cannot 

be stopped due to its OS specification, so GPU memories are 

consumed by the display. On the other hand, GUI display is 

stopped on Linux.  

Another cause concerning Keras is that NVIDIA driver on 

Windows has some latency time in CUDA kernel when its 

API is called to run, so it took some time and does not 

dispatch immediately[22].  

 

3.3.3. Comparison between normal BP algorithm and 

FTL-algo 

Table 5 shows the average learning time per epoch for 

normal BP algorithm. 

The values of ((FTL-algo time)–(normal BP time)) / 

(FTL-algo time)・100 (%) calculated from Table 4 and 5 are 

shown in Table 6. 

Table 6 shows the following. 

 The increase of the computation time of FTL-algo 

compared to normal BP algorithm is less than 49% per 

epoch.  

 Especially when Nh is 107 or more, the computation time 

on Windows is less than 8 percent. Therefore, the 

difference between these two algorithms is not the main 

reason of computation time difference between the two 

OSs.  

 These results show that Linux environments are better than 

ones on Windows in term of learning time, so only execution 

results on Linux are shown below. 

 

3.3.4. Comparison Result with Previous Researches 

The data of average learning time per epoch on our Linux 

Table 5  Learning time per epoch for normal BP algorithm 

Nh 
Keras Pytorch 

Linux(s) Windows(s) Linux(s) Windows(s) 

53 0.0967 0.267  0.00141  0.00522  

107 0.0976 0.297  0.00145  0.00575  

167 0.0967 0.299  0.00140  0.00518  

226 0.104  0.301  0.00144  0.00563  

 

Table 6  Values of ((FTL-algo time)–(normal BP time)) / 

(FTL-algo time)・100 (%) 

Nh 
Keras  Pytorch 

Linux (%) Windows (%) Linux (%) Windows (%) 

53 48.0  13.3  11.9 36.1  

107 48.9  2.62  7.64  3.79  

167 48.2  3.24 9.09  7.17 

226 44.7 2.90  7.69  0.716  

 

Table 7  Average learning time per epoch (Linux) 

Nh CUDA[13](s) Chainer[17](s) Keras(s) Pytorch(s) 

53 0.00153  0.0129  0.186 0.00160  

107 0.00246  0.0129  0.191  0.00157  

167 0.00371  0.0132  0.187  0.00154  

226 0.00493  0.0130  0.188  0.00156  

 

Table 9  Data given by dividing each method value in 

Table 7 by each Pytorch value 

Nh CUDA[13] Chainer[17] Keras Pytorch 

53 0.684  5.75 45.5  1.00 

107 1.65 8.63 62.7 1.00 

167 2.58 9.16  64.9  1.00 

226 3.29 8.65  63.5  1.00 

 

 

Table 8  Programming environment in [17] 

OS Ubuntu 16.04 LTS 

CPU AMD A10 5800K 

GPU NVIDIA GeForce GTX 1070 

GPU RAM 8 GB 

GPGPU Platform CUDA 8.0.61 / CuPy 5.1.0 

Programming 

Language 

Python 3.5.2 

DLFW Chainer 5.1.0 

Fig.4  Relation between average learning time per 

epoch and Nh 
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environments and in previous studies [13] and [17] are shown 

in Table 7. In [17], the methods of both previous studies are 

executed on the environment shown in Table 8, and their data 

are quoted from [17]. Fig.4 shows relation between average 

learning time per epoch and Nh by data in Table 7. Table 9 

shows data given by dividing each method value in Table 9 by 

each Pytorch value.  

Tables 7 and 9 and Fig.4 show the following. 

1. Among these four methods, the learning time per epoch of 

Pytorch is the smallest when Nh is 107 or more. 

2. The learning time of CUDA[13] is increasing along with the 

increase of Nh. 

3. On the other hand, the learning time of each DLFW is 

almost a constant regardless of Nh. 

4. When Nh is 107 or more, the learning time of CUDA[13] is 

longer than Pytorch. 

5. The learning time of Keras is the largest, about 65 times as 

much as Pytorch.  

The main reason for the long learning time in Keras (5-th 

item mentioned above) is that only Pytorch has special 

features which is called “CUDA SEMANTIC”[23], which is 

explained as follows. 

 For Example, concerning torch.cuda.synchronize() feature, 

when data is transferred from a CPU to a GPU by using 

this feature, Pytorch automatically performs necessary 

synchronization, so data transfer and calculation for a 

learning can be performed simultaneously. Also, with 

pin_memory() feature, the speed of data transfer from a 

CPU to a GPU is increased. 

 Furthermore, with torch.cuda.empty_cache() feature, 

unused cache memory is released from Pytorch to achieve 

higher speed.  

In addition, the main reason for 4-th item mentioned above is 

that programming code in CUDA[13] is developed according to 

GPU and CUDA technologies in 2013, although version–up 

speed of Pytorch almost catches up with the progress speed of 

these recent technologies, including CUDA SEMANTIC as 

mentioned above. In other words, if an optimized CUDA C 

FTL-algo program which uses recent technologies sufficiently 

could be developed, it might be faster than a FTL-algo 

program in Pytorch.  

3.4. Programming Development 

3.4.1. Overview 

In the following, programming development process of 

each part about difference between FTL-algo and BP 

algorithm on Pytorch environment is described. Detail of the 

same process on Keras environment is omitted because Keras 

learning time is longer than Pytorch.  

Most of the contents described in this section are not 

explained in the official manuals of Pytorch. Therefore, this 

section should be useful information for most Pytorch users 

who want to implement parts of algorithm that are not 

implemented in the original Pytorch. 

 

3.4.2. Sigmoid function with temp parameter

（tempsigmoid） 

In Pytorch, activation function is defined in activation.py 

file which is located inside nn.modules. The difference with 

Keras is that each optimizer is defined in each separate file.  

Pytorch also has an automatic differentiation feature like 

Keras that is called “autograd”. 

We need to create the new activation function called 

tempsigmoid. Here, as shown in Fig.5, Pytorch tempsigmoid 

activation function is inherited from sigmoid function as same 

as Keras.  

About this part, the official manual has no explanation to 

modify and describe this function. Therefore, authors 

consulted with developers via the web community and tried 

various methods until success.  

Fig.6  Description of applied tempsigmoid function 

Fig.5  Description of tempsigmoid function 

Fig.7  Description of WeightClipper class 
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In Pytorch, the computation process in tempsigmoid function 

has to be “torch tensor” type. The partial differentiation is 

automatically done by inheriting sigmoid function with 

“return” code. Fig.6 shows how to call tempsigmoid in 

Pytorch. 

 

3.4.3. Weight absolute constraint (W|1|-process) 

Unlike Keras, Pytorch have no constraint feature. Because 

of this, we need to create new object class for it in Pytorch. As 

shown in Fig.7, this object class is called “WeightClipper”.  

As shown in Fig.8, the WeightClipper class is defined as the 

“clipper”s parameter, and is executed by “apply” code written 

in training model.  

 

3.4.4. Stop condition process 

Unlike Keras, Pytorch has no function to stop learning 

corresponding to the condition of Eq.(12). Therefore, it is 

necessary to define new class for it. 

About this part, there is no explanation in the official manual. 

Therefore, authors consulted with developers via web 

community, and tried various methods until success in 

developing this part.  

Fig.9 shows the “StopatLossValue” class defined in Pytorch. 

Here, check is performed at the end of epoch, and if the 

condition is satisfied, training will be forcedly terminated. 

Furthermore, since StopatLossValue class is a usual object 

class, it is called as shown in Fig.10. 

 

3.4.5. Dataset preparation 

On this research, it is necessary to convert the dataset from 

decimal to 32x32 bit array binary. In addition, the dataset that 

will be used in DLFWs need to be convert to tensor data type 

which has multi-dimensional arrays.  

In Keras, this convert is made automatically by numpy 

library. On the other hand, since Pytorch uses torch.tensor(), 

the descriptions of the procedure for preprocessing to read 

training data is needed. Because there is no explanation in the 

official manual for it, authors developed this part with trial 

and error, consulting with the developers via web community. 

The discoveries are shown below. 

 Conversion from numpy type to tensor type, 

“torch.from.numpy().float()” is required as shown in 

Fig.11. 

 Furthermore, each description of 

“torch.utils.data.TensorDataset” and 

“torch.uitls.data.DataLoader” is also required as shown in 

Fig.12. Particularly, in order to find appropriate values for 

each parameter of “torch.utils.data.DataLoader”, authors 

through trial and error, checked the data size of output data 

variables, and checked data values correlation in detail. 

These reasons are listed below. 

─ Depending on the value of each parameter given to 

torch.utils.data.DataLoader, the size of output data 

Table 10  Coding complexity on Keras and Pytorch 

 

Number of 

lines of code 

Number of 

modified files 

Programming 

language 

Keras 109 4 Python 

Pytorch 141 1 Python 

 

Fig.11  Description of torch.from.numpy().float() 

Fig.12  Description of torch.utils.data.TensorDataset 

and torch.utils.data.DataLoader 

Fig.10  Description of applied StopatLossValue 

Fig.8  Description of applied WeightClipper 

Fig.9  Description of StopatLossValue 
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variables in each process during training is changed. If 

the sizes are not set correctly, an error occurs and the 

program cannot be executed. 

─ According these parameter values, output data values in 

each process during training also change. 

─ Each process during training is like a black-box. 

3.4.6. Programming code comparison 

Table 10 shows data about programming codes on Pytorch 

and Keras. 

Table 10 shows the following.  

 Programming in Keras has fewer lines of codes compared to 

Pytorch. The reason is that Keras has fewer lines to create 

model training. Furthermore, in Keras the code to execute a 

training can be described with one line of the “model.fit()” 

function. On the other hand, creation process for training 

model in Pytorch is more complicated.  

 Regarding the development of FTL-algo, there are more 

modified files in Keras than Pytorch. Because in Keras the 

files are divided for each function, so that modifying for 

each file is necessary. 

 

4.  Conclusions 

 

In this research, we show how to implement and execute 

FTL-algo using DLFWs of Keras and Pytorch. As a result, we 

have discovered the following.  

 Linux environments can run FTL-algo faster than 

Windows environments. 

 Pytorch can execute FTL-algo faster than Keras. 

 The number of lines of program code in Keras is fewer 

than Pytorch. However, the number of files which should 

be modified in Keras is more than Pytorch. In other words, 

the programming difficulty between both DLFWs is almost 

the same.  

Based on the above, related to “the first purpose” 

mentioned in Section “1.2 Purpose”, regarding the 

implementation of FTL-algo with two DLFWs (Keras and 

Pytorch) on two OSs (Linux and Windows), we found that the 

most optimal environment is Pytorch on Linux environment. 

Next, comparing the results mentioned above with the 

methods in [13] and [17], we discovered that Pytorch 

environment on Linux can execute FTL-algo faster than these 

two previous studies. In other words, related to “the second 

purpose” mentioned in Section 1.2, we discovered a method 

that requires less learning time than both prior researches. 

In addition, related to “the third purpose” mentioned in 

Section 1.2, how to develop and execute “BP algorithms with 

some modifications like FTL-algo” on Pytorch are shown. 

Most of these explanations are not included in the official 

manual provided by Pytorch developer. 

As our future works, we will contact each DLFW developer 

to report this research result which is “new function” that can 

be implemented in each DLFW so that it could be considered 

to be implemented in the new version upgrade. 

 

Keywords: Deep Learning Framework, Keras, Pytorch, Fault 

tolerant BP learning, Multi-layered Perceptron, GPGPU 
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