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Particle Swarm Optimization (PSO) is one of the population-based metaheuristics. The algorithm is simple yet the 

convergence is rather fast. The parameter values have a large influence on the search performance. Many studies on 

PSO parameter tuning have been conducted so far. This paper proposes determining parameters separately in each 

stage into which the iterative process is divided, using Design of Experiments (DoE) methodology. The situation of 

the swarm is considered to be changing as the process proceeds. Hence, a certain effect is expected with this 

method. The exploration with the proposed method is performed on four test functions. Additionally the exploration 

with three other methods is also conducted for comparison. The proposed method yields good results. This study 

also reveals that the search performance improves when parameters, such as inertia weight, increase as the process 

proceeds. 
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1. Introduction 
 

It is not practical finding values for all possible 

combinations to solve NP-hard combinatorial optimization 

problems. In this case, metaheuristic algorithms are very 

effective. Optimization problems, i.e., minimization or 

maximization, can be solved with the methods almost 

regardless of problem classes. The solutions can be obtained 

in a practical time. However, the exact values are not 

guaranteed. The methods have been applied to various 

problems, e.g., the shortest path problem, the work scheduling 

problem, the facility location problem, etc. Genetic algorithm 

(GA)[1] is one of the most famous algorithms. Another 

representative algorithm, Particle Swarm Optimization (PSO) 

was proposed by Kennedy and Eberhart in 1995[2]. PSO 

algorithm is simple, yet the convergence to the solution is 

rather fast. However, it tends to drop into local optima. 

Shi and Eberhart introduced into the original PSO a 

coefficient named inertia weight[3], which is now used 

commonly. Clerc proposed a constriction factor[4], which is 

beyond the scope of this paper. 

PSO parameters have significant influence on search 

performance. Therefore, parameter tuning has also been 

discussed. Shi and Eberhart proposed linearly decreasing 

inertia weight during the iterative process[5]. Van den Bergh 

presented optimal parameters in his PhD thesis[6]. Xin, Chen 

and Hai divided the iterative process into three stages, and 

allocated different inertia weight for each of them[7]. On the 

other hand, Dao, Abhary and Marian applied to GA Taguchi 

experimental design, Design of Experiments (DoE), for 

parameter tuning[8]. 

The author applied DoE to determine PSO parameters, 

which were constant during the iterative process[9]. Generally, 

it is important for metaheuristics to balance between the 

performance of converging solutions and maintaining 

diversity. Since the situation of the swarm changes as the 

search process proceeds, it is considered effective to adjust the 

balance by changing parameters during the process.  

This study divides the iterative process into four stages, and 

tries to determine PSO parameters separately in each of them 

by using DoE, to improve search performance. 

The rest of this paper is structured as follows. The next 

section focuses on the theory of PSO, while Section 3 refers to 

DoE. Section 4 explains problem setting. Section 5 discusses 

experimental results. Finally Section 6 concludes the paper. 

 

2. PSO 
 

PSO was inspired by the behavior of a flock of birds, a 

swarm of insects, a school of fish, etc.[10] The particles 

(individuals) that compose a swarm exist in the n-dimensional 

search space. The sets of components of their position vectors 

are candidate solutions. Initially the particles are distributed 

randomly in the search space. Then their positions are updated 

according to the following equations. 
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where 
k
ix , 

k
iv are the position vector and the velocity vector 

of particle i in the kth update, respectively. ipbest , gbest  

are the position vectors at which the fitness (function) values 

are the most excellent in the migration history of particle i and 

of the whole swarm, respectively. w is a coefficient named 

inertia weight, c1 and c2 are coefficients that indicate the 

influence on particle i of ipbest  and gbest , respectively. 

r1 and r2 are uniform random numbers between 0 and 1. 

After the update are repeated for predetermined times, the 

component set of the position vector of gbest is treated as 

quasi-optimal solution. 

 

3. DoE 
  

In an experiment, if the numbers of factors (parameters) 

and/or their levels are large, it is not practical to try all 

possible combinations. In this case, DoE proposes to 

experiment part of the combinations instead of all of them, 

with the orthogonal array experiment design[11]. An orthogonal 

array is a table which indicates the combination of factors. 

Various types are prepared corresponding to the numbers of 

factors and levels. The orthogonal array is generated based on 

a matrix called a latin square, which the same numbers are not 

exist in one row nor one column. The columns are orthogonal 

to each other. We calculate the mean value of each level of 

factors derived from the experiments executed according to 

the orthogonal array. Thus the best level of each factor is 

obtained. DoE extremely reduces total number of 

experiments. 

 

4. Problem setting 
 

Test functions are used for evaluating the performance of 

search algorithms. For each function the domain is defined 

and the exact global minimum or maximum is known. The 

performance of search algorithm is indicated by the difference 

between the solution obtained by the algorithm and the exact 

global minimum/maximum. The test functions are classified 

into unimodal and multimodal. Multimodal functions are 

generally more difficult to find good solutions. This paper 

treats four functions as described below. They are all 

representative test functions and have a global minimum in 

the search space.  

(1) Sphere function 
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(1) Sphere (2) Rosenbrock 

 
 

(3) Rastrigin (4) Schwefel 

Fig. 1  Shapes of test functions (n  2) 
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Unimodal function. No dependency between variables. 

It is relatively easy to obtain a good solution as a test 

function. Nevertheless as n get larger, the convergence 

becomes extremely worse. 

(2) Rosenbrock function 
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Unimodal function. Strong dependencies between variables. 

Global minimum exists in a narrow valley. Although the 

valley is rather easy to find, convergence to global 

minimum is difficult. 

(3) Rastrigin function 
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Multimodal function. No dependency between variables. 

The function has many local optima geometrically in a 

regular pattern. It has a big valley structure, of which the 

global optimum lies at the bottom. 

(4) Schwefel function 
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Multimodal function. No dependency between variables. 

The global optimum exists close to the boundaries of the 

search space, around which there are no local optima. 

Hence the search algorithms easily trap into local optima. 

It is more difficult to get a good solution than Rastrigin 

function. 

The shapes of above functions in the case of n  2 are 

illustrated in Fig. 1. 

Determining PSO parameters separately for multiple stages 

proposed in this paper is carried out as follows. Factors are 

three parameters: w, c1 and c2. Each of them has four levels as 

shown in Table 1. Swarm size is fixed to 20. Final iteration 

number is set to 5000 to terminate the exploration within a 

practical time. The dimension is set to n  30 for all the test 

functions. With above setting, the convergence is expected to 

progress to a certain extent for observing properly. 

The iterative process are divided into four stages as shown 

in Table 2. To determine the parameters by using DoE 

methodology, the combinations of parameters for the 

experiments in each stage are designated according to the 

orthogonal array L16 (43) as shown in Table 3. 

Each experiment is executed five times for each stage. The 

optimal parameters are determined by the mean function 

values derived from the experiments. Then with the optimal 

parameters, five trials are executed again in the stage. The 

position and velocity vectors of the particles at the end of the 

stage are taken over to the next one, for the subsequent 

experiments. As a comparison, the explorations with the other 

three types of parameters are also carried out as follows. 

(i) Recommended parameters by Van den Bergh[6] 

Table 1  Factors and their levels 

Factor Parameter 
Level 

1 2 3 4 

A w 0.4 0.6 0.8 1.0 

B c1 1.2 1.4 1.6 1.8 

C c2 1.2 1.4 1.6 1.8 

 

Table 2  Iteration numbers in each stage 

 Stage Iteration number  

 I 1 - 10  

 II 11 - 100  

 III 101 - 1000  

 IV 1001 - 5000  

 

Table 3  Orthogonal array L16 (43) 

Experiment 

Level 

Factor 

A 
Factor 

B 
Factor 

C 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 1 4 4 

5 2 1 2 

6 2 2 1 

7 2 3 4 

8 2 4 3 

9 3 1 3 

10 3 2 4 

11 3 3 1 

12 3 4 2 

13 4 1 4 

14 4 2 3 

15 4 3 2 

16 4 4 1 
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Van den Bergh proposed in his PhD thesis these 

parameters. 

729844.0w   

496180.11 c   

496180.12 c
 

 

(ii) Linearly decreasing inertia weight[5] 

w is decreasing linearly from 0.9 to 0.4 during the iterative 

process. c1 and c2 are as follows. 

21 c   

22 c
 

 

(iii) Constant parameters determined by DoE 

Constant parameters are determined throughout the 

iterative process. The factors and the levels are the same as 

Table 1. Every experiment is executed according to Table 3 

for five times. The optimal parameters are determined from 

the mean value derived in every experiment. 

In all cases, swarm size is 20, and the iterative process is 

repeated 5000 times same as the proposed method. 

 

5. Results 
 

Table 4 shows the optimal parameters derived from the 

experiments in every stage using DoE. In comparison, Table 5 

shows the parameters, constant throughout the iterative 

process, obtained by DoE. With the above optimal parameters, 

the explorations are executed again 30 times for both cases. 

The experiments with the parameters recommended by Van 

den Bergh and with linearly-decreasing w are also carried out 

30 times. Fig. 2 shows the transition of each function value of 

worst, mean and best cases with four types of parameters. In 

most cases, good results were obtained in the explorations 

using DoE for multiple stages. For the transition of the best 

values of Rosenbrock function, the parameters of Van den 

Berge and linearly-decreasing w brought the better results. 

The DoE method for a single stage is also effective to the best 

values of Schwefel function. The above results are considered 

to be obtained because the determination process with DoE is 

judged by the mean values derived in each experiment. Every 

transition data of mean function value shows the better results 

with the proposed method. Furthermore, there are less 

differences among best and worst data obtained by the 

proposed method than the other ones. Generally, w is 

recommended to be set large number at the beginning which 

is suitable for global search, and is decreased gradually as the 

iterative process progresses for facilitating local search. This 

study shows the opposite results, especially for multimodal 

functions. At least the results indicate that it leads to good 

solutions without narrowing the migration range of particles 

to maintain diversity even the process proceeds. Initially 

particles are distributed randomly in the search space. That 

means the diversity of candidate solution is acquired then. 

Therefore, it is of little importance to get further diversity with 

large w at the first stage. As convergence progresses, larger w 

seems to be effective to maintain diversity. Especially for 

multimodal functions, PSO may trap into local optima. Hence 

larger w is considered to work effectively to get out of them. 

pbesti, gbest do not initially have enough information. As 

iteration proceeds, they grow reliable having more experience. 

Therefore, the larger c1 and c2 are considered to be effective at 

later stages. 

 

6. Conclusion 
 

This study proposes determining PSO parameters 

separately for each stage into which the iterative process is 

divided, by using DoE methodology. The proposed method 

brought good results in most cases. For the test functions 

treated in this paper, it is revealed that increasing the values of 

w, c1 and c2 as the process proceeds leads to good results. In 

future work, the author would examine the further exploration 

in other functions. Since the exploration process proposed in 

this study is somewhat complicated, it is considered effective 

Table 4  Optimal parameters derived from DoE 

(multiple stages) 

Function Iteration number w c1 c2 

Sphere 

1 - 10 0.4 1.4 1.2 

11 - 100 0.6 1.6 1.2 

101 - 1000 0.6 1.6 1.6 

1001 - 5000 0.6 1.6 1.8 

Rosenbrock 

1 - 10 0.4 1.6 1.2 

11 - 100 0.6 1.6 1.6 

101 - 1000 0.6 1.8 1.8 

1001 - 5000 0.6 1.8 1.8 

Rastrigin 

1 - 10 0.4 1.4 1.2 

11 - 100 0.4 1.2 1.2 

101 - 1000 0.8 1.8 1.8 

1001 - 5000 0.8 1.8 1.4 

Schwefel 

1 - 10 0.4 1.2 1.4 

11 - 100 0.6 1.6 1.6 

101 - 1000 0.8 1.4 1.8 

1001 - 5000 0.8 1.8 1.8 

 

Table 5  Optimal parameters derived from DoE 

(single stage) 

 Function w c1 c2  

 Sphere 0.4 1.8 1.2  

 Rosenbrock 0.4 1.8 1.2  

 Rastrigin 0.8 1.8 1.2  

 Schwefel 0.8 1.8 1.4  
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Fig. 2  Transition of function values 
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to apply it to the functions that are hard to converge. 
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